
Quantum atomic dynamics in amorphous silicon; a path-integral Monte Carlo simulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys.: Condens. Matter 12 265

(http://iopscience.iop.org/0953-8984/12/3/305)

Download details:

IP Address: 171.66.16.218

The article was downloaded on 15/05/2010 at 19:31

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/12/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter12 (2000) 265–274. Printed in the UK PII: S0953-8984(00)05948-8

Quantum atomic dynamics in amorphous silicon;
a path-integral Monte Carlo simulation

Carlos P Herrero
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientı́ficas (CSIC),
Campus de Cantoblanco, 28049 Madrid, Spain
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Abstract. The quantum dynamics of atoms in amorphous silicon has been addressed by using
path-integral Monte Carlo simulations. Structural results (radial distribution functions) found from
these simulations agree well with experimental data. We study the quantum delocalization of the
silicon atoms around their equilibrium positions. This delocalization is larger for coordination
defects (fivefold-coordinated Si atoms). Correlations in the atomic displacements are analysed as
a function of the interatomic distance and compared with those derived from classical Monte Carlo
simulations. At high temperatures, the classical limit is recovered. Our results are also compared
with those derived from similar quantum simulations for crystalline silicon. Structural disorder
favours a larger vibrational amplitude for the atoms in amorphous silicon.

1. Introduction

The dynamics of atoms in amorphous solids gives rise to localized low-energy excitations,
displaying patterns that show a substantial deviation from the situation of atomic nuclei
harmonically vibrating around their potential minima [1, 2]. This important deviation from
harmonicity in amorphous materials, along with the quantum character of the atomic dynamics,
is of great importance in their characterization. In this context, the classical papers by
Phillips [3] and Andersonet al [4] opened a prolific line of research by modelling the low-
energy excitations in amorphous solids by two-level systems. There appeared later several
detailed descriptions of the low-energy motion in this kind of material, beyond the standard
tunnelling model [5].

Amorphous silicon (a-Si), in addition to its technological importance, is considered as
a model system for analysing energy-minimized structures and low-energy excitations in
disordered solids [6, 7]. Computer modelling has been extensively used in the last few years
to study several structural and dynamical properties of this material [8, 9]. Most simulations
were carried out by means of molecular dynamics (MD), using empirical interatomic potentials
[10–14]. The most widely employed potential has been that proposed by Stillinger and Weber
(SW) [15], which gives a good description of amorphous and crystalline silicon (c-Si). This
interatomic potential has been employed in quantum simulations of c-Si, yielding results
(quantum delocalization of the Si atoms, heat capacity, thermal expansion) that were in good
agreement with those derived from experiment [16, 17]. The vibrational density of states
(VDOS) corresponding to the SW potential, as well as its comparison with experimental
results, has been studied in detail for c-Si and a-Si [11,13,18]. Other empirical potentials for
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266 C P Herrero

silicon appeared later in the literature [19–22], as well as computational methods for obtaining
amorphous structures with low concentrations of coordination defects [23].

Amorphous silicon has been also studied byab initio MD simulations, by using the Car–
Parrinello method [24, 25]. This procedure gave good agreement with experiment for the
electronic properties and phonon spectrum of a-Si. However, the silicon nuclei are treated in
this method as classical particles, and the atomic quantum dynamics can be studied by assuming
a harmonic model, with the standard quantization of the solid vibrations. This approach is
questionable for studying vibrational properties of amorphous solids, due to the presence of
highly anharmonic low-energy vibrations in this kind of material [5]. Even for crystalline
solids, vibrational modes are never totally harmonic, and anharmonic terms appear to higher
order when expanding in the amplitude of the lattice modes [26]. The contribution of the
anharmonic terms in the potential energy becomes more prominent as the phonon coordinate
becomes large at finite temperatures.

Finite-temperature properties of solids, beyond the usual harmonic approximation, can
be studied by the Feynman path-integral (PI) method, which provides us with a well-suited
formulation for the statistical mechanics of quantum systems. By combining numerical
methods, such as Monte Carlo (MC) or MD simulations, with the PI formulation, one has
a practical way to analyse properties related to the quantum nature of the atomic nuclei.
This computational technique is well established as a tool for studying many-body problems
in which anharmonic effects can be non-negligible. In our context, static and dynamical
properties of c-Si [16,17] and of point defects in this material were studied earlier by using PI
MC simulations [27,28]. Recently, we have shown that quantum effects in the delocalization
of the atomic nuclei are non-negligible also in the presence of structural disorder [29]. This
means, in particular, that the peaks in the radial distribution function (RDF) of a-Si can be
broadened by zero-point motion of the silicon nuclei. In line with this, the present work is an
extension of the results presented earlier in reference [29].

In this paper we present a PI MC simulation of a-Si, with emphasis on the quantum
dynamics and delocalization of the atoms around the potential minima. We analyse the
correlation between atom displacements, and compare the results of the quantum simulations
with those found from classical Monte Carlo simulations, as well as with those obtained for
c-Si with the same method.

2. Computational method

For our system ofP quantum particles (Si nuclei), the partition functionZ at temperatureT
can be written as a path integral in the following way [30]:

Z =
∫

exp

[
−1

h̄

∫ βh̄

0
8[R(τ )] dτ

]
DR(τ ) (1)

whereβ = 1/(kBT ), τ is the so-called imaginary time, andR is a vector in a 3P -dimensional
space, the components of which are the Cartesian coordinates of the nuclei,R = (r1, . . . , rP ).
The pathsR(τ ) fulfil the cyclic conditionR(0) = R(βh̄), and the function8[R(τ )] is given
by

8[R(τ )] = 1

2
m

P∑
p=1

ṙ2
p(τ ) + V [R(τ )] (2)

wherem is the Si nuclear mass, and ˙rp the derivative ofrp with respect to the imaginary
time τ . Our calculations are carried out within the Born–Oppenheimer approximation, and
we employ a potential energy surfaceV (R) for the nuclei coordinates, as described below.
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The path integral in equation (1) can be evaluated by a discretization of the pathsR(τ ) intoN
points (R1,R2, . . . ,RN ). For sufficiently largeN (the so-called Trotter number),Z can be
approximated by a free-particle propagator, leading to the expression [31]

ZN =
(
Nm

2πβh̄2

)3PN/2 ∫
dR1 · · · dRN exp(−βVeff) (3)

where the integral is extended to the whole 3P -dimensional configuration space.ZN is formally
equivalent to the partition function for a classical system ofP cyclic ‘chains’, interacting via
an effective potentialVeff(R1, . . . ,RN), and each ‘chain’ being divided intoN ‘time slices’.
This causes the appearance in the simulations ofN ‘replicas’ for each quantum particle. Such
replicas are treated as classical particles, and the corresponding partition functionZN converges
toZ in the limitN →∞ [31]. More details on this method can be found elsewhere [31,32].

The interatomic interaction has been modelled by the SW potential [15]. We have
employed for amorphous silicon a cubic cell including 216 Si atoms, with a length of 16.6 Å
and periodic boundary conditions. This simulation cell was generated by a simulated annealing
process, using classical MC simulations, as described elsewhere [10, 13, 29]. For the sake of
comparison, we have performed also MC simulations of c-Si, under the same conditions as
those for a-Si. For the crystalline material, we have employed a 2× 2× 2 supercell of the
regular face-centred-cubic cell, as described elsewhere [16].

Path-integral Monte Carlo simulations of a-Si and c-Si were carried out in the temperature
range from 10 to 800 K. The Trotter numberN was made temperature dependent:N = 3βh̄ω0

with ω0 = 450 cm−1, close to the Debye frequency of the material. For example, at 50 K we
haveN = 40 replicas for the Si nuclei. For a few temperatures, we have checked that the use
of larger values forN does not produce any appreciable change in the results presented here
for a-Si, in line with earlier findings for c-Si [16]. Thus, the numerical error introduced in the
energy by the discretization of the path integrals is lower than±0.3 meV per Si atom, over the
whole temperature range studied here.

The partition functionZN in equation (3) has been sampled by the Metropolis method
[33,34]. A simulation run proceeds via successive MC steps, each one consisting of sequential
moves of: (i) the replicas associated with each nucleus; and (ii) the centre of gravity of the
cyclic paths (rigid moves of the paths). At each temperature studied, the maximum distance
allowed for random moves was adjusted to yield an acceptance ratio of about 50% for each kind
of sampling. With this criterion, at 50 K the maximum change in the Cartesian coordinates
in a MC step amounts to 0.059 Å for moves of individual replicas, and to 0.049 Å for centre-
of-gravity moves. At 500 K, the corresponding values are 0.058 and 0.156 Å, respectively.
For each temperature, we generated 5000 paths per atom for system equilibration, and 20 000
paths per atom for the calculation of ensemble-average properties. For comparison, we have
carried out also classical MC simulations of a-Si and c-Si in the same temperature range as
the PI MC simulations. This classical limit is in fact obtained by setting the Trotter number
N = 1 in our calculations.

In the path-integral formalism, the finite mean radius of the cyclic paths is related to
a spatial delocalization of the particle, which results from quantum fluctuations. To give a
quantitative measure of the spread of the density distribution for a given nucleusp due to
quantum fluctuations, we employ the quantum delocalizationQ2

p, defined as the mean square
radius of the pathsrpj :

Q2
p =

〈
1

N

N∑
j=1

(rpj − rp)2
〉

(4)
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where the indexj indicates the different replicas (time slices) of nucleusp, and the centre of
gravity of a path (sometimes called the ‘centroid’) is given by

rp = 1

N

N∑
j=1

rpj . (5)

The angular brackets in equation (4) and in the expressions given in the following indicate
ensemble averages with the partition function given in equation (3). In the classical limit (high
temperatures), the cyclic paths collapse into single points and thereforeQ2

p → 0.
The quantityQ coincides with the so-called ‘radius of gyration’ [31,35], defined for the

quantum paths in analogy with classical simulations of solids and fluids (note that we writeQ

when speaking about quantum particles in general, andQp when we refer to a given atomic
nucleusp, as in equation (4)). For an isotropic three-dimensional harmonic oscillator with
frequencyω, the mean square radiusQ2

ho of the quantum paths is given by [35]

Q2
ho =

3h̄

2mω
coth

(
h̄ω

2kBT

)
− 3kBT

mω2
(6)

i.e., it coincides with the difference between the total spatial delocalization(1r)2 of the
quantum oscillator (the first term on the r.h.s. of equation (6)) and the thermal delocalization
of a classical oscillator at temperatureT (the second term in equation (6)).

In general, one can define a ‘thermal’ delocalization for a quantum particle at a given
temperatureT as the mean square displacement of the centre of gravity of its corresponding
paths; i.e.,

C2 = 〈r2〉 − 〈r〉2. (7)

For a particle moving around a potential minimum, as is the case here for Si nuclei, this quantity
C2 goes to zero forT → 0 [36], and converges to the classical mean square displacement of
the particle at high temperatures. The total spatial delocalization of the quantum particle is
given by

D2 ≡ (1r)2 = Q2 +C2. (8)

Thus, the quantum delocalization of particle (atomic nucleus)p, Q2
p, calculated as the mean

square radius of the paths, coincides in the limitT → 0 with the delocalization(1rp)2 due
to zero-point motion. Note that for the particular case of a harmonic oscillator,C2 coincides
with the classical mean square displacement 3kBT /mω

2 at any temperatureT , but this is not
true in general.

3. Results

The structure of amorphous materials is conveniently characterized by the pair correlation or
radial distribution functiong(r) [1,2]. In figure 1 we show the RDF for a-Si, as derived from
our classical (continuous lines) and quantum (dashed lines) Monte Carlo simulations, in the
region of interatomic distances between 2 and 2.8 Å. AtT = 50 K (part (a) of the figure),
there appears a clear difference between the two curves. In particular, the height of the first
peak in the RDF (that corresponding to nearest neighbours) is larger in the classical result than
that found from the quantum simulations. For increasing temperature, the width of the peak
increases, whereas its height becomes smaller [29]. This change is more pronounced in the
classical results, and thus the difference between the RDF obtained in the classical and quantum
simulations is reduced as temperature goes up. However, this difference is still observable at
T = 400 K, as shown in figure 1(b). The two kinds of Monte Carlo simulation, classical and
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Figure 1. The radial distribution function for amorphous silicon in the region of the nearest-
neighbour distance, as derived from quantum (dashed lines) and classical (continuous lines) Monte
Carlo simulations, at two different temperatures: (a)T = 50 K; (b)T = 400 K.

quantum, give the same result at temperatures of the order of the Debye temperature of the
material (2D ∼ 650 K). A comparison of the RDFs found from PI MC simulations of a-Si
and c-Si was presented elsewhere [29].

In figure 2 we present a comparison of the RDF derived from our PI MC simulations at room
temperature, and that found from neutron diffraction results for pure evaporated amorphous
silicon by Kugleret al [37]. Note that we present results forg(r), which is related to the radial
distribution functiont (r) shown in reference [37] byt (r) = 4πdrg(r), whered is the density
of the material. From our quantum simulations we find a good agreement with the experimental
results, taking into account the artifacts appearing in the RDF derived from the experiment,
and presumably connected with the Fourier transformation of the measured structure factor
S(Q). These artifacts are especially important at small distances (see the feature atr < 2 Å
in figure 2), due to the cut-off in momentum space.

We now turn to study the spatial delocalization (mean square displacements) of the Si
atoms, caused by the vibrational modes in the material. At this point it is convenient to
distinguish between fourfold-coordinated Si atoms and coordination defects in the amorphous
material, as the latter are expected to show a different vibrational behaviour. Our generated
cells for a-Si contain between 10 and 20% fivefold-coordinated atoms (assuming a nearest-
neighbour cut-off of 2.9 Å), and they do not include threefold-coordinated ones. The
quantum delocalizationQ2 is displayed in figure 3 for low temperatures. Black squares and
circles correspond to fourfold- and fivefold-coordinated atoms in a-Si. For comparison, the
delocalizationQ2 in c-Si is also given (open squares). The largest difference between the
values found for these three cases appears close toT = 0. In the low-temperature limit, the
radius of gyration for fivefold-coordinated atoms is larger than that corresponding to fourfold-
coordinated ones, as a consequence of the larger vibrational density of states at low energies in
the coordination defects [38]. In the case of fourfold-coordinated Si atoms, the low-temperature
radius of gyration is clearly larger in a-Si than in the crystalline material. This could be expected
from the shift towards lower energies that is exhibited by the VDOS of the amorphous material,
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as compared to its crystalline counterpart [11,13,18]. At temperatures larger than 200 K, the
quantum delocalization approaches the high-temperature limit

Q2 = h̄2β

4m
(9)

i.e., it goes asc/T , wherec is a constant that depends on the particle massm, but not on the
details of the potential surface.
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Figure 2. The radial distribution function for amorphous
silicon. Symbols are results from neutron diffraction
measurements [37], and the continuous line was obtained
from PI MC simulations at 300 K.

Figure 3. Mean square radius of gyration of the quantum
paths for fourfold- (black squares) and fivefold- (black
circles) coordinated atoms in a-Si, and in c-Si (open
squares). Lines are guides to the eye.

As explained above, the decrease in quantum delocalizationQ2, as temperature goes
up, is accompanied by an increase in the ‘thermal’ delocalization of the silicon nuclei (but
the sum of the two quantities,D2, increases withT ). The delocalizationC2 is shown in
figure 4 as a function of temperature. Black symbols correspond to a-Si (squares and circles
for fourfold- and fivefold-coordinated atoms, respectively), whereas open squares are data
points obtained for c-Si in the PI MC simulations. As indicated above, this quantityC2

should follow a linear temperature dependence in a harmonic approach, and deviations from
linearity are due to anharmonicities in the potential energy surface around its minima. The
dashed lines in figure 4 are linear fits to the low-temperature data for the three different cases
shown there. For c-Si (open symbols) the thermal delocalization follows closely a linear
behaviour, apart from a slight deviation at temperatures larger than 600 K. Such a departure
from linearity is more pronounced for a-Si, and it is most prominent for coordination defects
(fivefold-coordinated atoms) at high temperatures, where the thermal delocalization is clearly
larger than that expected from the extrapolation of the low-temperature results in a harmonic
approach.

The quantum motion of atoms in solids is usually studied within the harmonic approx-
imation by quantization of the vibrational normal modes into phonons. These quantum
vibrations describe the relative motion of the atoms at different frequencies and wave vectors.
From the path-integral Monte Carlo simulations, one can study the relative displacements of
the atoms in real space. In particular, the influence of quantum effects on the atomic motion
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Figure 4. Thermal delocalizationC2 of the Si
nuclei versus the temperature. Black squares:
fourfold-coordinated atoms in a-Si; black circles:
fivefold-coordinated atoms in a-Si; open squares:
c-Si. The dashed lines are linear fits to the low-
temperature data points.

can be quantified by calculating the correlations between atom displacements at different
temperatures. To this end, we define the correlationρ for displacements of atom pairs by the
quantity:

ρpq = 〈up · uq〉[〈u2
p〉〈u2

q〉
]1/2 (10)

whereup (uq) is the displacement of atomp (q) from its equilibrium position. It is clear that
ρpq is a number in the interval [–1, 1]. For atoms vibrating strictly in phase, one hasρpq = 1,
and one expectsρpq = −1 when they vibrate in anti-phase. For independent motion of atoms
p andq, one would haveρpq = 0. From our path-integral formalism,ρpq can be calculated as

ρpq = 1

DpDq

〈
1

N

N∑
j=1

(rpj − 〈rp〉) · (rqj − 〈rq〉)
〉
. (11)

This correlation is expected to be important for small interatomic distances and will decrease
as the interatomic distance increases. This is in fact found from the PI MC simulations,
as was shown in reference [29]. For a-Si at room temperature,ρ has the value 0.34 for
nearest-neighbour atoms, and is close to zero forr > 6 Å. By studying the dependence of the
correlationρ on interatomic distancer, one finds that it does not depend appreciably on the
degree of structural disorder present in the material, since the results obtained for amorphous
and crystalline silicon are similar for a given distancer [29].

The temperature dependence of the correlationρ for nearest neighbours is shown in figure 5
for amorphous (part (a)) and crystalline silicon (part (b)). For each material, we present results
from classical and quantum Monte Carlo simulations. In the classical simulations, one finds,
for both a-Si and c-Si, thatρ is roughly independent of temperature, and coincides with the
high-temperature limit of the quantum simulations. Note that these classical results for a-Si
(black squares) are slightly (but clearly) lower than those corresponding to c-Si (open squares).
This is a consequence of the fact that the average nearest-neighbour distance in a-Si is larger
than in c-Si, due to the asymmetry in the first peak in the RDF of a-Si (see figure 1). Since
ρ decreases for increasingr, one expects for a-Si an average value lower than for c-Si, when
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Figure 5. The temperature dependence of the correlationρ between atom displacements for nearest
neighbours: (a) amorphous silicon; (b) crystalline silicon. Squares and circles correspond to results
derived from classical and quantum Monte Carlo simulations, respectively. Lines are guides to the
eye.

integratingρ for nearest neighbours (we have used a nearest-neighbour cut-off distance of
2.9 Å).

In a classical harmonic approximation, because of the equipartition principle one has
〈up · uq〉 = ApqT , whereApq is a constant independent of temperature. Thus,ρpq is
temperature-independent in such a classical approach. This is what we find for the correlation
ρpq from our classical MC simulations for a-Si and c-Si, indicating that the anharmonicities
in the vibrational modes do not affect this correlation in practice. Although both〈u2

p〉 and
〈u2

q〉 in the denominator of equation (10) show clear deviations from the linear behaviour
expected for a harmonic approach (especially at highT ; see, e.g., figure 4), these deviations
are compensated for by those appearing in〈up · uq〉 in the numerator of that expression.

In a quantum model of the lattice vibrations, however,ρpq should depend on temperature,
as different vibrational modes have different relative contributions, depending on the frequency
ω and the temperatureT . In particular, for a harmonic approach, the contribution to〈up ·uq〉
of a mode with frequencyω will be proportional to [̄n(ω, T ) + 1/2]/ω, wheren̄(ω, T ) is the
Bose–Einstein thermal population factor. This means that at zero temperature this contribution
scales as 1/ω, whereas at highT it goes as 1/ω2. Then, the relative weight of modes with
smallω increases for increasing temperature. The low-frequency part (ω . 200 cm−1) of the
vibrational spectrum is dominated by long-wavelength (acoustic) modes. These modes have a
positive (close to 1) contribution to the correlationρpq between neighbouring atoms, and thus
their enhancing contribution for increasing temperature causesρpq to become larger. This is
basically what one observes in figure 5 for a-Si (closed circles) and c-Si (open circles).

4. Concluding remarks

We have shown that quantum atomistic simulations of amorphous materials, and silicon in
particular, are complementary to the classical simulations (MC and MD) carried out in the last
decade. Path-integral MC simulations are especially interesting, since they provide us with
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detailed information on microscopic properties of these materials, that are directly influenced
by the presence of structural disorder and anharmonicity in the solid vibrations. As expected,
quantum corrections to the atom delocalization, and thereby to structural characteristics such
as the radial distribution function, become non-negligible at temperatures lower than the Debye
temperature of the material (2D ∼ 650 K).

We have studied the mean square displacement of the atomic vibrational motion. In
particular, the spatial extent of the quantum paths that describe the Si nuclei at a temperatureT

gives the quantum delocalizationQ2. This quantity is a measure of the relevance of quantum
effects in describing the atom dynamics. It converges to the mean square displacement(1r)2

atT = 0, and is larger for fivefold-coordinated atoms, as expected for quantum particles with
a larger density of low-energy vibrations. Even small extra contributions of low-frequency
modes to the VDOS can have an appreciable effect on the atom delocalization. The ‘thermal’
delocalizationC2 is also larger for the coordination defects. ForC2, the contribution of low-
frequency modes is particularly important at highT , whereas forD2 it is most relevant at low
temperatures. Thus, the increase in atomic delocalization in a-Si, as compared with c-Si, is
caused by a softening of the vibrational modes and a larger anharmonicity in the amorphous
solid.

These real-space quantum simulations allow us to study correlations in the actual motion of
neighbouring atoms. For a given interatomic distancer, the correlationρ(r) becomes smaller
for decreasing temperature. This is due to the quantum delocalization, that dominates at low
temperatures (versus the thermal delocalization), and causes a decrease in the correlation of
atom displacements, as compared with the classical result.

A limitation of the computational method employed here is the use of effective interatomic
potentials, fitted to reproduce known properties of the material. In connection with this, we
note that, in recent years,ab initioPI molecular dynamics simulations have been carried out for
molecules [39], and they begin now to be feasible for studying certain properties of solids [40].

Quantum simulations such as those presented here can give valuable information on several
challenging problems related to amorphous semiconductors. In particular, the microscopic
structure and atomic dynamics in hydrogenated amorphous silicon are interesting questions,
whose study has to involve the presence of structural disorder (and thereby enhanced
anharmonicities) and light atoms, which renders the treatment of quantum effects (hydrogen
delocalization, tunnelling) highly non-trivial.
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